Review 1

1 List the three basic elements of an atom and state the charge of each (positive, negative, or neutral).

Element	Charge
Electron	negative
Proton	positive
Neutron	neutral

2. An electron forced out of orbit by an external force is called a Free electron .
3. Conductors allow many free electrons to flow when an external electric force is applied.
4. Which of the following materials are good conductors?
a. copper
e. aluminum
b. plastic
f. glass
c. silver
g. iron
d.rubber
h. mica
5. Semiconductor devices can be manufactured to allow many electrons to flow in one direction and few electrons to flow in the opposite direction

Review 2

1 Elements are identified by the number of electrons in orbit around the nucleus.
2. A material that has an excess of electrons is said to have a negative charge.
3. A material that has a deficiency of electrons is said to have a positive charge.
4. Like charges repel and unlike charges attract .
5. The force that is applied to a conductor to cause current flow is voltage .
6. Electrons move from a or b.
a. positive to negative
b. negative to positive
7. With an increase of length or a decrease of crosssection of a conductor, resistance will increase .
a. increase
b.decrease

Review 3

1. The basic Ohm's Law formula is $\quad \mathbf{V}=\|^{*} \mathbf{R}$.
2. When solving circuit problems;
current must always be expressed in ampere, voltage must always be expressed in volt, and resistance must always be expressed in ohm (Ω).
3. The total current of a simple circuit with a voltage supply of $\mathbf{1 2}$ volts and a resistance of $\mathbf{2 4 \Omega}$ is 0.5 amps .

$$
\begin{aligned}
& \text { From Ohm's law } \\
& \text { I = V/R } / \mathrm{R}=12 / 24=0.5 \mathrm{~A}
\end{aligned}
$$

4. What is the total resistance of a series circuit with following values: $\mathrm{R}_{1}=10 \Omega, \mathrm{R}_{2}=15 \Omega$, and $\mathrm{R}_{3}=20 \Omega$? $=45 \Omega$.

$$
R_{t}=R_{1}+R_{2}+R_{3}=10+15+20=45 \Omega
$$

5. What is total current of a series circuit that has a 120
volt supply and 60Ω resistance? 2 amps
From Ohm's law

$$
I=V / R=120 / 60=2 A
$$

6. In the following circuit, the voltage dropped across $\mathbf{R}_{\mathbf{1}}$ is $\mathbf{6}$ volts and $\mathbf{R}_{\mathbf{2}}$ is $\mathbf{6}$ volts.
$\mathbf{R}_{\mathbf{1}} \& \mathbf{R}_{\mathbf{2}}$ are connected In series

$R_{t}=R_{1}+R_{2}=1.5+1.5=3 \Omega$

$\mathrm{I}_{\mathrm{t}}=\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{V}_{\mathrm{t}} / \mathrm{R}_{\mathrm{t}}=12 / 3=4 \mathrm{~A}$
$\mathrm{V}_{1}=\mathrm{I}_{1} * \mathrm{R}_{1}=4 * 1.5=6 \mathrm{~V}$
$\mathrm{V}_{2}=\mathrm{I}_{2} * \mathrm{R}_{2}=4 * 1.5=6 \mathrm{~V}$
7. In the following circuit, voltage dropped across $\mathbf{R}_{\mathbf{1}}$ is 71.4 volts and across $\mathbf{R}_{\mathbf{2}}$ is $\mathbf{2 8 . 6}$ volts.
$\mathbf{R}_{\mathbf{1}} \& \mathbf{R}_{\mathbf{2}}$ are connected In series \downarrow
$R_{t}=R_{1}+R_{2}=5+2=7 \Omega$
$\mathrm{I}_{\mathrm{t}}=\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{V}_{\mathrm{t}} / \mathrm{R}_{\mathrm{t}}=100 / 7=14.3 \mathrm{~A}$

$\mathrm{V}_{1}=\mathrm{I}_{1} * \mathrm{R}_{1}=14.3 * 5=71.4 \mathrm{~V}$
$\mathrm{V}_{2}=\mathrm{I}_{2} * \mathrm{R}_{2}=14.3 * 2=28.6 \mathrm{~V}$

Review 4

1. The total resistance of a parallel circuit that has four 20Ω resistors is 5Ω.
$R_{t}=$ the value of one resister \div the number of resisters
$R_{t}=20 / 4=5 \Omega$
2. R_{t} for the following circuit is 5.45Ω.
$1 / R_{t}=1 / R_{1}+1 / R_{2}+1 / R_{3}$
$1 / R_{t}=1 / 10+1 / 20+1 / 30$
 $1 / R_{t}=3 / 30+1.5 / 30+1 / 30$ $1 / R_{t}=5.5 / 30$
$R_{t}=30 / 5.5=5.45 \Omega$
3. R_{t} for the following circuit is 3.33Ω.

$$
\begin{aligned}
& R_{t}=\left(R_{1} * R_{2}\right) \div\left(R_{1}+R_{2}\right) \\
& R_{t}=(5 * 10) /(5+10)=50 / 15=3.33 \Omega
\end{aligned}
$$

4. Voltage available at R_{2} in the following circuit is

12 volts.

$V_{t}=12 \mathrm{v}$
In parallel circuits the voltage is constant
$\mathrm{V}_{\mathrm{t}}=\mathrm{V}_{1}=\mathrm{V}_{2}$
$V_{2}=12 v$
5. In a parallel circuit with two resistors of equal value and a total current flow of 12 amps , the value of current through each resistor is 6 amps .
$\mathbf{R}_{1}=\mathbf{R}_{\mathbf{2}}$
In parallel circuits the voltage is constant
$V_{t}=V_{1}=V_{2}$
$l_{t}=l_{1}+l_{2}$
V1/R1 = V2/R2
$\mathrm{I}_{1}=\mathrm{V}_{1} / \mathrm{R}_{1}$
$\mathrm{I}_{\mathbf{2}}=\mathrm{V}_{\mathbf{2}} / \mathrm{R}_{\mathbf{2}}$
$\rightarrow I_{1}=I_{2}$
$\rightarrow I_{t}=I_{1}+I_{2} \rightarrow 12=I_{1}+I_{2}$
$\rightarrow I_{1}=6$
$\rightarrow I_{2}=6$
6. In the following circuit, current flow through $\mathbf{R}_{\mathbf{1}}$ is \qquad
2.4 amps , and through R_{2} is $\mathbf{1 . 6} \mathrm{amps}$.

In parallel circuits the voltage is constant
$\mathrm{V}_{\mathrm{t}}=\mathrm{V}_{1}=\mathrm{V}_{\mathbf{2}}=12 \mathrm{v}$
From Ohm's law
\downarrow
$I 1=V 1 / R 1=24 / 10=2.4 \mathrm{amps}$
$I 2=V 2 / R 2=24 / 15=1.6 \mathrm{amps}$

Review 5

1. Calculate equivalent resistance for R_{1} and R_{2} and totalresistance for the entire circuit.

$\mathbf{R}_{\mathbf{1}} \& \mathbf{R}_{\mathbf{2}}$ are connected In parallel \downarrow
$R_{182}=\left(R_{1} * R_{2}\right) \div\left(R_{1}+R_{2}\right)$
$R_{1 \& 2}=(20 * 30) /(20+30)=600 / 50=12 \Omega$
$R_{3} \& R_{1 \& 2}$ are connected In series
$\underset{R_{1 \& 2 \& 3}}{\downarrow}=R_{3}+R_{1 \& 2}=10+12=22 \Omega$
2. Calculate equivalent resistance for R_{1} and R_{2} and total resistance for the entire circuit.

$\mathbf{R}_{1} \& \mathbf{R}_{2}$ are connected In series
$\downarrow \begin{aligned} & \downarrow \\ & \mathbf{R}_{1 \& 2}=R_{1}+R_{2}=30+10=40 \Omega\end{aligned}$
$\mathbf{R}_{3} \& \mathbf{R}_{1 \& 2}$ are connected In parallel \downarrow
$R_{182 \& 3}=\left(R_{182} \times R_{3}\right) \div\left(R_{182}+R_{3}\right)$
$R_{1 \& 2 \& 3}=(40 \times 20) \div(40+20)=800 / 60=13.33 \Omega$

Review 6

1. The rate at which work is done is called power.
2. The basic formulas for power in a DC circuit are:
$P=\| \times V$
$P=I^{2} \times R$
$\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$
3. In a circuit with a $\mathbf{1 2}$ volt supply and $\mathbf{4 \Omega}$ resistance, the power consumed is

36 watts.

$\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$
$P=12^{2} / 4=144 / 4=36 w$

General questions:

1. The force that moves electrons is Voltage or EMF.
2. Movement of electrons is Current.
3. The force that stop electrons is Resistance.
4. What is the unit for Voltage, Current, Resistance and Power?

- Voltage-Volt.
- Current-Ampere.
- Resistance - Ohm.
- Power-Watt.

5. What is the device that measure Voltage, Current, Resistance and Power?

- Voltage - Voltmeter.
- Current-Ammeter.
- Resistance-Ohmmeter.
- Power-Wattmeter.

